首页 >> 资讯 >

连续函数的介值定理(什么是介值定理)

2023-04-24 13:14:14 来源: 用户: 

大家好,小东方来为大家解答以上的问题。连续函数的介值定理,什么是介值定理这个很多人还不知道,现在让我们一起来看看吧!

1、介值定理,又名中间值定理,是闭区间上连续函数的性质之一,闭区间连续函数的重要性质之一。

2、在数学分析中,介值定理表明,如果定义域为[a,b]的连续函数f,那么在区间内的某个点,它可以在f(a)和f(b)之间取任何值,也就是说,介值定理是在连续函数的一个区间内的函数值肯定介于最大值和最小值之间。

3、如果一个连续函数在区间内有相反符号的值,那么它在该区间内有根存在(博尔扎诺定理)。

4、扩展资料:考虑实数域上的区间  以及在此区间上的连续函数  。

5、(1)如果u是在a和b之间的数,也就是说:那么,存在  使得 。

6、(2)值域  也是一个区间,或者它包含  ,或者它包含  。

7、例如,对于x> 0和f(0)= 0,取  定义的函数  在x = 0时连续,这个函数在x=0处不连续,但是该函数具有介值属性。

8、历史上,这个介值属性被建议为实数函数连续性的定义,但这个定义没有被采纳。

9、Darboux定理指出,由某些区间上某些其他函数的区分产生的所有函数都具有介值属性(尽管它们不需要连续)。

10、参考资料来源:百度百科——介值定理。

本文到此分享完毕,希望对大家有所帮助。

  免责声明:本文由用户上传,与本网站立场无关。财经信息仅供读者参考,并不构成投资建议。投资者据此操作,风险自担。 如有侵权请联系删除!

 
分享:
最新文章