首页 >> 综合 >

勾股定理公式怎么算(勾股定理公式)

2024-01-05 20:20:49 来源: 用户: 

大家好,小东方来为大家解答以上的问题。勾股定理公式怎么算,勾股定理公式这个很多人还不知道,现在让我们一起来看看吧!

1、勾股定理公式:勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。

2、中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。

3、勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。

4、勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。

5、在中国,商朝时期的商高提出了“勾三股四玄五”的勾股定理的特例。

6、在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。

7、扩展资料:勾股定理的意义:勾股定理的证明是论证几何的发端;2、勾股定理是历史上第一个把数与形联系起来的定理,即它是第一个把几何与代数联系起来的定理;3、勾股定理导致了无理数的发现,引起第一次数学危机,大大加深了人们对数的理解;4、勾股定理是历史上第—个给出了完全解答的不定方程,它引出了费马大定理;5、勾股定理是欧氏几何的基础定理,并有巨大的实用价值.这条定理不仅在几何学中是一颗光彩夺目的明珠,被誉为“几何学的基石”。

8、而且在高等数学和其他科学领域也有着广泛的应用.1971年5月15日,尼加拉瓜发行了一套题为“改变世界面貌的十个数学公式”邮票,这十个数学公式由著名数学家选出的,勾股定理是其中之首。

9、参考资料来源:百度百科——勾股定理     勾股定理:在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方。

10、这个定理在中国又称为“商高定理”,在外国称为“毕达哥拉斯定理”。

11、勾股定理(又称商高定理,毕达哥拉斯定理)是一个基本的几何定理,早在中国商代就由商高发现。

12、据说毕达高拉斯发现了这个定后,即斩了百头牛作庆祝,因此又称“百牛定理”。

13、勾股定理指出:直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方。

14、 也就是说,设直角三角形两直角边为a和b,斜边为c,那麽 a2 + b2 = c2 勾股定理现发现约有400种证明方法,是数学定理中证明方法最多的定理之一。

15、勾股数组满足勾股定理方程a2 + b2 = c2的正整数组(a,b,c)。

16、例如(3,4,5)就是一组勾股数组。

17、 由于方程中含有3个未知数,故勾股数组有无数多组。

18、推广如果将直角三角形的斜边看作二维平面上的向量,将两斜边看作在平面直角坐标系坐标轴上的投影,则可以从另一个角度考察勾股定理的意义。

19、即,向量长度的平方等于它在其所在空间一组正交基上投影长度的平方之和。

20、非常同意楼主所说。

21、一。

22、勾股定理  如果直角三角形的两条直角边长分别为a、b,斜边为c,那么a2+b2=c2.即直角三角形两直角边的平方和等于斜边的平方.  指出:  (1)我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦,即勾2+股2=弦2.  (2)勾股定理反映了直角三角形三边之间的数量关系,因此是直角三角形的性质定理,它为我们利用计算的方法研究几何图形的性质提供了新的途径.  (3)勾股定理的证明常用面积法证明,读者可根据图的几种拼图方式,用面积证明勾股定理.  (4)勾股定理只适用于直角三角形,对于一般非直角三角形就不存在这种关系.勾股定理的作用是:①已知直角三角形的两边求第三边;②在直角三角形中,已知其中的一边,求另两边的关系;③用于证明平方关系;④利用勾股定理,作出长为的线段.二、重点、难点、疑点突破勾股定理  勾股定理在西方又被称为毕达哥拉斯定理,它有着悠久的历史,蕴涵着丰富的文化价值.勾股定理是数学史上的一个伟大的定理,在现实生活中有着广泛的应用,被人誉为“千古第一定理”.  勾股定理反映了直角三角形(三边分别为a,b,c,其中c为斜边)的三边关系,即c2=a2+b2.  它的变形为c2-a2=b2或c2-b2=a2.  运用它可以由直角三角形中的两条边长求第三边.  例如:已知一个直角三角形两边长分别为3cm,4cm,求第三边长.  因为该题设没有说明哪条边是直角三角形的斜边,所以要进行分类讨论.  当两直角边分别为3cm,4cm时,由勾股定理有斜边为=5cm;  当斜边为4cm,一直角边为3cm时,则另一直角边为.  故第三边为5cm或(根号)7cm.。

本文到此分享完毕,希望对大家有所帮助。

  免责声明:本文由用户上传,与本网站立场无关。财经信息仅供读者参考,并不构成投资建议。投资者据此操作,风险自担。 如有侵权请联系删除!

 
分享:
最新文章
  • 傅雷:艺术与人生的灵魂工程师傅雷,中国现代著名的翻译家、文学评论家和教育家,他的名字与中国艺术与文化的...浏览全文>>
  • 化妆品中的科学:揭秘常见成分及其作用化妆品是现代生活中不可或缺的一部分,从护肤品到彩妆,每一款产品都蕴...浏览全文>>
  • 沁人心脾的春日春天,总是带着一种独特的魅力悄然降临。清晨,推开窗户,一股清新的空气扑面而来,仿佛是大自...浏览全文>>
  • 海珠区位于广州市南部,是广州的重要组成部分之一。作为一座历史悠久且充满活力的城区,海珠区以其独特的自然...浏览全文>>
  • 科技助力乡村振兴:数字农业成为新引擎近年来,随着互联网技术的快速发展,数字农业逐渐成为推动乡村振兴的重...浏览全文>>
  • 正月十五:团圆与希望的节日正月十五,元宵节,是中国传统的重要节日之一。这一天,不仅承载着浓厚的文化氛围...浏览全文>>
  • 板凳的拼音“板凳”是一个常见的汉语词汇,它的拼音是“bǎn dèng”。这个词由两个汉字组成,“板”表示木板...浏览全文>>
  • 清明节是中国传统的重要节日之一,通常在公历4月4日至6日之间。这一天不仅是祭祖扫墓的日子,也是人们亲近自然...浏览全文>>
  • 肥料:农业发展的基石肥料是现代农业生产中不可或缺的重要物质,被誉为“庄稼的粮食”。它为植物生长提供了必...浏览全文>>
  • “方兴未艾”读音及意义浅析“方兴未艾”是一个常用成语,出自《晋书·王羲之传》,意思是事物正在蓬勃发展,...浏览全文>>